Image Artifacts in Concurrent Transcranial Magnetic Stimulation (TMS) and fMRI Caused by Leakage Currents: Modeling and Compensation

نویسندگان

  • Nikolaus Weiskopf
  • Oliver Josephs
  • Christian C Ruff
  • Felix Blankenburg
  • Eric Featherstone
  • Anthony Thomas
  • Sven Bestmann
  • Jon Driver
  • Ralf Deichmann
چکیده

PURPOSE To characterize and eliminate a new type of image artifact in concurrent transcranial magnetic stimulation and functional MRI (TMS-fMRI) caused by small leakage currents originating from the high-voltage capacitors in the TMS stimulator system. MATERIALS AND METHODS The artifacts in echo-planar images (EPI) caused by leakage currents were characterized and quantified in numerical simulations and phantom studies with different phantom-coil geometries. A relay-diode combination was devised and inserted in the TMS circuit that shorts the leakage current. Its effectiveness for artifact reduction was assessed in a phantom scan resembling a realistic TMS-fMRI experiment. RESULTS The leakage-current-induced signal changes exhibited a multipolar spatial pattern and the maxima exceeded 1% at realistic coil-cortex distances. The relay-diode combination effectively reduced the artifact to a negligible level. CONCLUSION The leakage-current artifacts potentially obscure effects of interest or lead to false-positives. Since the artifact depends on the experimental setup and design (eg, amplitude of the leakage current, coil orientation, paradigm, EPI parameters), we recommend its assessment for each experiment. The relay-diode combination can eliminate the artifacts if necessary.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reducing image artefacts in concurrent TMS/fMRI by passive shimming

A significant problem in the concurrent application of transcranial magnetic stimulation (TMS) and functional magnetic resonance imaging (fMRI) is the image artefact caused by the effect of the TMS-coil on the homogeneity of the static magnetic field (B0). The resulting field inhomogeneity can lead to spatial distortions and local signal loss in echo-planar (EP) images. Here we demonstrate that...

متن کامل

Non Invasive Brain Stimulation by Transcranial Magnetic Stimulation (TMS): Principles and Applications

Magnetic brain stimulation used as a method of psychological interventions in the treatment of diseases. This method functions used in the treatment of clinical disorder such as speech and movement disorders caused by stroke, tinnitus, Parkinson's disease, nervous tics. Applications in the field of psychological therapy, it is possible to stimulate specific brain area involved in certain mental...

متن کامل

PRIORITY COMMUNICATION A Combined TMS/fMRI Study of Intensity-Dependent TMS Over Motor Cortex

Background: Transcranial magnetic stimulation (TMS) allows noninvasive stimulation of neurons using timevarying magnetic fields. Researchers have begun combining TMS with functional imaging to simultaneously stimulate and image brain activity. Recently, the feasibility of interleaving TMS with functional magnetic resonance imaging (fMRI) was demonstrated. This study tests this new method to det...

متن کامل

On the synchronization of transcranial magnetic stimulation and functional echo-planar imaging.

PURPOSE To minimize artifacts in echo-planar imaging (EPI) of human brain function introduced by simultaneous transcranial magnetic stimulation (TMS). MATERIALS AND METHODS Distortions due to TMS pulses (0.25 msec, 2.0 T) were studied at 2.0 T before and during EPI. RESULTS Best results were obtained if both the EPI section orientation and the frequency-encoding gradient were parallel to th...

متن کامل

On the feasibility of concurrent human TMS-EEG-fMRI measurements.

Simultaneously combining the complementary assets of EEG, functional MRI (fMRI), and transcranial magnetic stimulation (TMS) within one experimental session provides synergetic results, offering insights into brain function that go beyond the scope of each method when used in isolation. The steady increase of concurrent EEG-fMRI, TMS-EEG, and TMS-fMRI studies further underlines the added value ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 29  شماره 

صفحات  -

تاریخ انتشار 2009